## Synthetic glycan-based vaccines to combat bacterial diseases: from concept to immunogenicity in human

## Laurence A. Mulard

Institut Pasteur, University Paris Cité, UMR CNRS 3523, Chemistry of Biomolecules Laboratory 28 rue du Dr Roux, 75724 Paris Cedex 15, France laurence.mulard@pasteur.fr

Pathogens often express unique surface glycans, which contribute to their survival in the host and represent potential targets for vaccine development. Several polysaccharides and polysaccharide-protein conjugates are now licensed for routine vaccination and others are being developed. Otherwise, synthetic glycan-based conjugate vaccines are gaining increasing interest as attractive substitutes to the use of polysaccharide antigens of biological origin.<sup>1</sup>

Shigellosis, or bacillary dysentery, caused by the enteroinvasive bacteria *Shigella*, was identified as one of the main diarrheal diseases in children under five.<sup>2</sup> Species/serotype diversity and geographical distribution strongly support the need for a broad serotype coverage vaccine.

Using the *Shigella* context and the need for a highly immunogenic vaccine able to generate protective immunity in young children, we will address cutting-edge strategies for the design of the next generation glycoconjugate vaccines against infectious diseases.<sup>3</sup>

Interfacing chemical biology and structure-based vaccinology, we have developed vaccine candidates consisting of synthetic fragments of selected *Shigella* surface polysaccharides (Figure) covalently linked *via* single point attachment to protein carriers. SF2a-TT15,<sup>4</sup> a conjugate featuring a 15mer oligosaccharide hapten was shown to be strongly immunogenic

in human volunteers.

SF2a-TT15 With as а model, the presentation will discuss oligosaccharide selection, vaccine design, synthesis, and properties thereof. Shedding light on the input of organic chemistry in the context of vaccine development, the path forward to a broad coverage Shigella vaccine will also be exemplified for S. flexneri 3a and S. sonnei, two other prevalent Shigella serotypes. Emphasis will be on the importance of site-selective Oacetylation and on the challenge of zwitterionic oligosaccharide synthesis.<sup>5</sup>

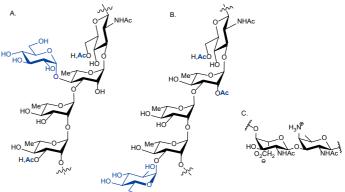



Figure: Repeating unit of the specific polysaccharides from *S. flexneri* 2a (A), *S. flexneri* 3a (B) and *S. sonnei* (C).

- [1] R. Adamo, Acc. Chem. Res. 2017, 50, 1270-1279.
- [2] J. Liu, J. A. Platts-Mills, J. Juma et al, Lancet **2016**, 388, 1291-1301.
- [3] L. A. Barel, L. A. Mulard, Hum. Vaccin. Immunother. 2019, 15, 1338-1356.
- [4] R. M. F. van der Put, C. Smitsman, A. de Haan et al, ACS Cent. Sci. 2022, 8, 449-460.
- [5] D. Dhara, L. A. Mulard, Chem. Eur. J. 2021, 27, 5694-5711.